编辑:LRS 好困
【新智元导读】来自中科大等机构的联合团队提出了一种全新的方法——SciGuard,可以保护AI for Science模型,防止生物、化学、药物等领域模型不会被不当使用。与此同时,团队还建立了首个专注于化学科学领域安全的基准测试——SciMT-Safety。「我们的实验失控了!这是我们自己创造的末日!」——《后天》(The Day After Tomorrow)
在科幻电影中,疯狂科学家通常是造成末日灾难的主角,而AI技术的迅猛发展似乎让这种情景离我们越来越近。

全球对AI潜在威胁的关注更多聚焦于通用的人工智能以及各种多媒体生成模型,但更重要的是如何监管「AI科学家」,即对那些快速发展的科学大模型。
为应对这一挑战,来自中科大、微软研究院等机构的联合团队深入分析了各种AI模型在Science领域如生物、化学、药物发现等领域的风险,并通过实际案例展示了化学科学中AI滥用的危害。

图1:开源AI模型为氰化氢和VX神经毒气提出可规避监管的新反应路径
与此同时,研究团队还指出,大语言模型也成为了有力的科学工具,大大降低了知识门槛。
图2展示了利用以大语言模型获取危险信息的示例。
随着技术发展,以大语言模型为中心加持的agent有能力进行科学任务的自动化执行,例如ChemCrow。这类agent如果没有非常细致的进行风险管理,容易造成更大的危险。
为了防止不好的影响,在公开版本的论文中该团队已将危险信息隐去。

图5:主流模型的测试结果
研究团队测试了GPT-4,GPT-3.5, Claude-2, Llama2-7B-Chat, Llama2-13B-Chat, PaLM-2, Vicuna-7B, Vicuna-13B, Mistral-7B和ChemCrow agent,上图展示了最终的测试结果,在该团队提出的科学安全测试集上,SciGuard取得了最好的防御效果。
在benchmark中Llama取得了不错的结果,出人意料的是,PaLM-2反而容易给出一些危险的回答。

图6:benchmark中的两个具体例子
论文中,作者展示了两个例子。面对恶意提问,各个LLM和agent都「诚实地」提供有害信息(被马赛克部分),只有SciGuard坚守住了底线。
呼吁关注
在这个日益依赖于高科技的时代,AI技术的进步带来了无限的可能性,但同时也伴随着前所未有的挑战。
而这项研究不仅是对科技发展的一次深刻反思,更是对全社会责任的一次呼唤。
论文最后,作者们强烈呼吁,全球科技界、政策制定者、伦理学家以及公众,应该携手合作,共同努力加强对AI技术的监管,不断完善相关技术,形成广泛的共识。
我们需要在积极推进AI4S模型的发展的同时,切实控制技术带来的潜在风险,确保科技的进步不仅是对人类的一次技术升级,更是对社会责任和伦理的提升。只有这样,我们才能真正走向一个由智慧和道德共同指引的未来。
参考资料:
相关文章









猜你喜欢
成员 网址收录40418 企业收录2986 印章生成263552 电子证书1157 电子名片68 自媒体91237